

SPAIN

Parque Científico de Madrid Faraday, 7 (Campus de Cantoblanco) 28049 Madrid Tel. +34 91 037 83 54 M. +34 672 060 393

BRASIL

Rua Elvira Ferraz, nº 250, Cj. 211 Itaim - Sao Pauolo, SP. Postcode: 04552-040 Tel. +55 11 3044 1813

MÉXICO

World Trade Center Montecito, 38 - Floor 35 - Office 10 Col. Nápoles - 03810 Mexico City Tel. +52 55 68232076

PORTUGAL

Complexo Interdisciplinar da Universidade de Lisboa Rooms 2.12 and 2.14 Avenida Prof. Gama Pinto nº 2, 1649-003 Lisboa Tel. +351 932 34 80 32

www.nimgenetics.com

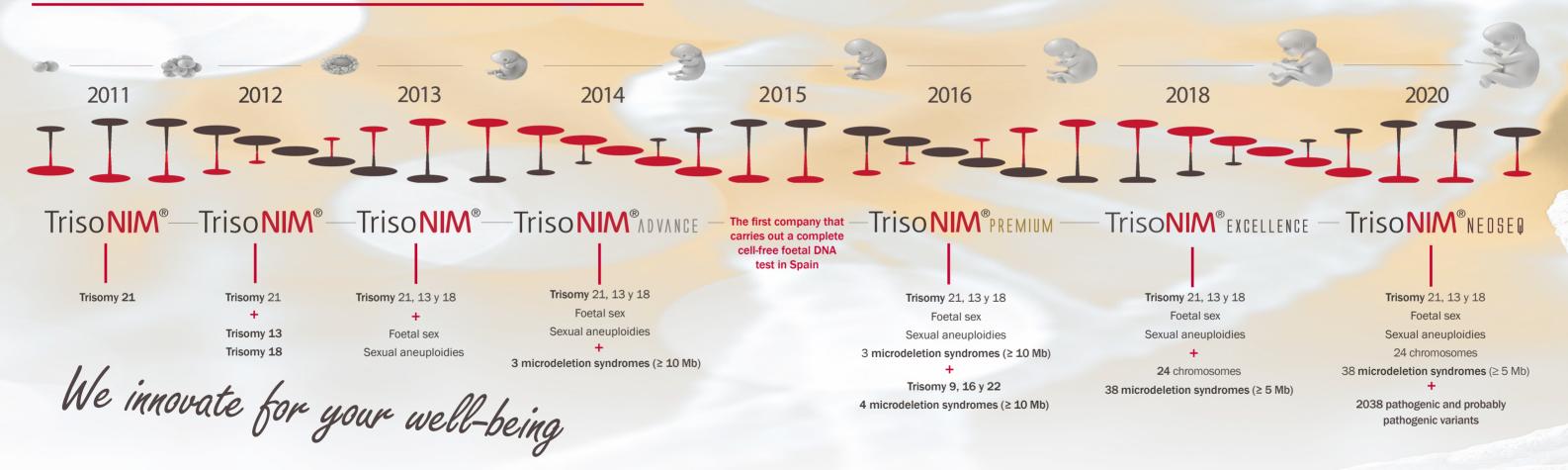
Comunidad de Madrid

CAT-26; Rev 02; 28/06/2021

CEQAS

NIMGenetics is a Genetic Diagnosis centre authorised by the

Department of Health and Consumption of the Community of Madrid, registered in the corresponding Register under



NIMGenetics - Leaders in non-invasive prenatal genetic diagnosis since 2011

Non-Invasive Prenatal Test - Detection of cell-free foetal DNA in maternal blood

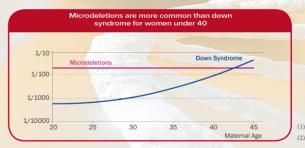
Currently, the most comprehensive non-invasive prenatal testing offers the following:

- Detection of foetal aneuploidies on chromosomes 21, 13, and 18.
- Study of aneuploidies on all chromosomes.
- Information on the most common sexual aneuploidies and on the foetal sex.
- Study of a <u>limited number of microdeletion syndromes</u>.

The technical limitations in these studies prevent other alterations of a pathogenic nature from being considered, thus hindering a more comprehensive approach.

TrisoNIM® NEDSED is a synonym of the great technological advance, enabling the analysis of other pathogenic alterations, providing a global genetic approach, which includes:

- A wide selection of microdeletion syndromes: These alterations represent a large group of serious pathologies
 which, when identified in the first trimester, make it possible to receive appropriate genetic counselling early
 on.
- Dominant monogenic diseases: The variants analysed are located in genes associated with disabling, lethal, and/or serious pathologies. Most of these mutations are characterised for being *de novo* (healthy parents), that is, there is no family history compatible with the variant.


Key aspects in the study of microdeletion syndromes

NIMGenetics pffers the most competent study of microdeletion syndromes, selected for their clinical relevance in prenatal diagnosis, with a detection ≥ 5Mb

Why choose a comprehensive study of microdeletion syndromes?

They do not depend on maternal age.

Overall, they have a significant prevalence that is higher than the one of Down Syndrome in young women (1.2).

Wapner RJ et al. N Engl J Med. 2012 Dec 6; 367(23):2175-2184

They allow for early diagnosis of pathologies that are not associated with echographic alterations during the first trimester (3,4).

The study of these genetic alterations does not significantly increase the number of amniocentesis (3).

The detection capacity is highly dependent on the foetal fraction and the size of these alterations.

Key aspects in the study of mutations in dominant monogenic diseases

A new dimension in prenatal diagnosis through the identification of alterations in single gene DNA sequence.

TrisoNIM® NEDSED offers a new diagnostic option that provides highly valuable information not covered by current approaches and without an alternative screening method.

A global incidence of approximately 1/600 individuals (higher than Down syndrome) (5).

This study is aimed at pathogenic or probably pathogenic variants in genes that are associated with severe, disabling, and/or lethal dominant monogenic diseases.

There is no suitable conventional screening method for these diseases and the ultrasound findings are inconclusive for their diagnosis.

-Within monogenic diseases, those associated with an autosomal dominant inheritance pattern represent 54%, and most of them appear in the absence of a family history, as more than 70% of the cases are *de novo variants* (6).

Advanced paternal age is associated with a higher frequency of variants that cause monogenic diseases (7,8).

TrisoNIM® NEDSEQ

Beyond the limits of non-invasive prenatal diagnosis

Studies of cell-free foetal DNA in maternal blood reach their maximum potential with TrisoNIM® NEDSED, which offers the most comprehensive study of clinically relevant syndromes during pregnancy.

ANALYSES ALL CHROMOSOMES

► STUDIES ANEUPLOIDY FOR ALL CHROMOSOMES

IT DETECTS:

- Trisomy 21, associated with Down syndrome
- Trisomy 18, associated with Edwards syndrome
- Trisomy 13, associated with Patau syndrome

REPORTS:

- · Aneuploidies for sex chromosomes and foetal sex
- Aneuploidies of the remaining autosomal chromosomes

REPORTS 38 MICRODELETION SYNDROMES

ANALYSES 2038 PATHOGENIC AND PROBABLY PATHOGENIC VARIANTS

• Located in 18 genes, associated with 27 genetic syndromes

LIST OF REPORTED MICRODELETION SYNDROMES

SYNDROME	#OMIM
1p36 Microdeletion	607872
1p32p31 Microdeletion	613735
2q33.1 Microdeletion	612313
2p12p11.2 Microdeletion	613564
3pterp25 Microdeletion	613792
4p16.3 Microdeletion	194190
4q21 Microdeletion	613509
5q12 Microdeletion	615668
Cri-du-chat Syndrome	123450
5q14.3q15 Microdeletion	612881
6pterp24 Microdeletion	612582
6q11q14 Microdeletion	613544
6q24q25 Microdeletion	612863
Langer-Giedion Syndrome	150230
9p Microdeletion	158170
DiGeorge 2 Syndrome	601362
10q26 Microdeletion	609625
11p11.2 Microdeletion	601224

SYNDROME	#OMIM
Jacobsen Syndrome	147791
WAGRO Syndrome	612469
WAGR Syndrome	194072
Frias Syndrome	609640
14q11q22 Microdeletion	613457
15q26qter Microdeletion	612626
15q26 Microdeletion	142340
15q11q13 Duplication	608636
Prader-Willi Syndrome	176270
Angelman Syndrome	105830
16p12p11 Microdeletion	613408
16q22 Microdeletion	614541
Yuan-Harel-Lupski Syndrome	
(combination of CMT1A and Potocki-Lupski)	616652
17p13.3 Microdeletion (Miller-Dieker Synd.)	247200
17p13.3 Duplication	613215
17p11.2 Microdeletion (Smith-Magenis Synd.)	182290
17p11.2 Duplication	610883
18q Microdeletion	601808
18p Microdeletion	146390
DiGeorge Syndrome	188400

GENES AND GENETIC SYNDROMES ASSOCIATED WITH THE GENETIC VARIANTS ANALYSED

	Skeletal abnormalities	
	GENE	SYNDROME
COL1	001141	Osteogenesis Imperfecta, Type I
		Osteogenesis Imperfecta, Type II
	COLIAI	Osteogenesis Imperfecta, Type III
		Osteogenesis Imperfecta, Type IV
		Osteogenesis Imperfecta, Type II
COL1A2	Osteogenesis Imperfecta, Type III	
		Osteogenesis Imperfecta, Type IV
FGFR3		Achondroplasia
		Thanatophoric dysplasia, type I
	FGFR3	Thanatophoric dysplasia, type II
		Crouzon syndrome with acanthosis nigricans

Craniosynostosis		
GENE	GENE SYNDROME	
FGFR2	Crouzon syndrome	
	Apert Syndrome	
	Jackson-Weiss syndrome	
	Pfeiffer syndrome	
FGFR1	Pfeiffer syndrome	

	Syndromic phenotype
GENE	SYNDROME
BRAF	Cardiofasciocutaneous syndrome
KRAS	Cardiofaciocutaneous syndrome II
MAP2K1	Cardiofaciocutaneous syndrome II
MAP2K2	Cardiofaciocutaneous syndrome IV
HRAS	Costello Syndrome
CHD7	CHARGE Syndrome
TSC1	Tuberous Sclerosis I
TSC2	Tuberous Sclerosis II
COL2A1	Stickler syndrome, type I
COL11A1	Type II Stickler syndrome
STAT3	Hyper IgE recurrent infection syndrome
LMNA	Hutchinson-Gilford Progeria

TrisoNIM® NEDSED

Combination of genome and exome studies for prenatal diagnosis

Cutting edge technology

Two combined technologies that enable for the most innovative approach:

- High-depth NGS for the detection of mutations.
- Low-depth whole-genome for variants detection in the number of copies (CNVs).

With the best prenatal diagnosis platform _____

A high risk result after a foetal DNA test must be confirmed by an invasive test. Therefore, NIMGenetics offers, free of charge, the validation of these cases:

- Chromosomal aneuploidies and CNVs: KaryoNIM^o Prenatal, enabling to quickly and efficiently establish a genetic diagnosis through the analysis of 124 syndromes.
- Dominant monogenic diseases: Validation by Sanger sequencing technology.

Reliability -

Risk prediction and foetal fraction calculation are performed using a double algorithm*, increasing the accuracy of the analysis.

3 A TOMANA	
SENSITIVITY	SPECIFICITY
99,17%	99,95%
98,24%	99,95%
99,99%	99,96%
>95%	-
>98%	-
	99,17% 98,24% 99,99% >95%

Published data: Zhang H et al. Ultrasound Obstet Gynecol 2015; 45: 530-538

(*): Analysis algorithm with CE-IVD marking for trisomy 21, tested on more than 3 million pregnant women.

Quality parameters associated with genetic variants detection:

PARAMETER	RESULT
Sensitivity	97,5%
Specificity	99,7%
Positive Predictive Value	95,9%
Negative Predictive Value	99,8%

BGI technology validation study inner data

Parameters associated with the detection of copy number variants (CNVs):

PARAMETER	RESULT
Sensitivity	>99,99%
Specificity	99,99%

Hong et al. Sci China Life Sci 62, 215-224 (2018)

Tailored to your needs

TrisoNIM® NEDSED

Reliability, safety and innovation

Hand in hand with the most qualified experts -

Endorsed by the world's most relevant genomic company (BGI), the NIMGenetics team, made up of experts in Medical Genetics, members of the AEDP (1) and the AEGH (2) is recognised for its specialisation in the area of prenatal genetic diagnosis.

Certified quality _____

- The UNE-EN ISO 15189:2013 accreditation for screening foetal aneuploidies (13, 18, 21, X, and Y chromosomes) and for foetal sex determination in maternal blood by massive sequencing (NGS).
- The ISO 9001:2015 accreditation for the provision of analysis services for genetic diagnosis in the pre-analytical, analytical, and post-analytical stages for the specialities of genomics, non-invasive prenatal testing and molecular diagnosis.

Limitations _____

- Recommended for pregnant women at 12 weeks or more confirmed by ultrasound.
- For pregnant women with over 22 weeks of pregnancy, special informed consent is required.
- Not suitable for egg donation.
- Not suitable for twin pregnancy.

Result report time _____

The result will be reported within 15 business days as of the sample reception in the laboratory.

Your TrisoNIM® NEDSED step by step

- Consult your specialist.

 Based on the specialist's advice, sign the informed consent
- Contact us to schedule the sample extraction and collection
- At NIMGenetics, the sample will be analysed and a report will be drawn up
- See your specialist for report interpretation

(1): AEDP: Spanish Association of Prenatal Diagnosis (2): AEGH: Spanish Association of Human Genetics

TrisoNIM®NEOREO

TrisoNIM®NEOSED