

NIMNet® Epilepsy

A comprehensive genetic approach for the study of epilepsy

Epilepsy and genetics

- Epilepsy is a disorder characterized by the presence of recurrent epileptic seizures. In recent years, causal genetic alterations have been identified in a significant and growing number of cases.
- Because epilepsy can occur as a result of a combination of multiple genetic factors that increase the risk of developing the disorder, or as a consequence of mutations in a single gene, its genetic diagnosis is complex.

NIM Net® Epilepsy

When is the genetic study of epilepsy indicated?

- Molecular confirmation of clinical diagnosis
- Optimization of the treatment and clinical management of the epileptic patient
- Identification of families that carry causal mutations

Is the patient 's epilepsy associated with a neurodevelopmental disorder or a polymalformative syndrome?

From the sequencing of the complete exome, NIMGenetics offers an approach to diagnosis that adapts to clinical needs through directed and / or broad spectrum analysis.

ExoNIM® Targeted

Analysis targeted to defined epileptic syndromes

- CEE* of Early Onset and / or Infantile Spasms
- Nocturnal frontal lobe epilepsy
- Juvenile Myoclonic Epilepsy
- Progressive Myoclonic Epilepsy
- Generalized Epilepsy with Febrile Seizures Plus
- Focal Epilepsy
- · Benign Familial Neonatal-Infantile Seizures
- Epilepsy associated with neurometabolic disorders

ExoNIM® Plus Epilepsy

A broad spectrum approach

- 1. 223 genes previously associated with the development of this pathology.
- It encompasses, in addition to the genes included in the ExoNIM® Targeted designs, the study of syndromic epilepsy and that associated with mitochondrial, lysosomal or neurometabolic disorders.

(*) Childhood Epileptic Encephalopathy.

From the most directed to the most extensive study, in stages or in a single step.

NIMGenetics offers you all the possibilities and advice you need.

Selection of genes whose association with epilepsy is registered in the databases and / or in the current scientific literature.

 $^{^{(\}mbox{\scriptsize $^{\pm}$1)}}\mbox{An approach that studies more than 5,700 OMIM genes.}$

^(*2) An approach based on the sequencing of probands and progenitors for the identification of the inheritance pattern of the variants identified in the patient.

ExoNIM® Plus Epilepsy

NON-SYNDROMIC EPILEPSY	
Benign Familial Neonatal-Infantile Seizures	KCNQ2, KCNQ3, PRRT2, SCN2A, SCN8A
Childhood Epileptic Encephalopathy of Early Onset and / or Infantile Spasms	AARS, ALDH7A1, ALG13, ARHGEF15, ARHGEF9*, ARX*, ATP6AP2*, CACNA1A, CACNA2D2*, CASK*, CASR, CBL, CDKL5, CHD2, CSNK1G1, DNM1, DOCK7, EEF1A2, FASN, GABBR2*, GABRA1, GABRB1, GABRB3*, GNA01, GRIN1, GRIN2A, GRIN2B, HCN1, HDAC4, HNRNPH1, HNRNPU, IQSEC2*, KCNA2, KCNB1, KCNQ2, KCNT1, MAGI2*, MAPK10, MEF2C, MTOR, NEDD4L, NECAP1, OTC, PCDH19, PIGA*, PIGQ, PIGV, PLCB1, PNKP, PNPO, POLG, QARS, RYR3, SCN1A, SCN1B, SCN2A, SCN8A, SIK1, SLC12A5, SLC13A5, SLC25A12, SLC25A22, SLC2A1, SLC35A2*, SPTAN1, ST3GAL3, STXBP1, SYNGAP1*, SZT2, TBC1D24, TSC1, TSC2, WWOX, YWHAG
Generalized Epilepsy with Febrile Seizures Plus	SCN9A, ADGRV1 (GPR98), CHD2, CPA6, GABRA1, GABRB3, GABRD*, GABRG2*, HCN1, PCDH19, PRRT2, SCN1A, SCN1B, SCN2A, SCN8A, STX1B, STXBP1
Myoclonic Epilepsy	Infantile: BRAT1, TBC1D24 Juvenile: CACNB4, CLCN2, EFHC1, GABRA1, GABRD Progressive: ASAH1, CERS1**, CSTB, EPM2A, GOSR2, KCNC1, LMNB2*, NHLRC1, PRDM8*, PRICKLE1, PRICKLE2, SCARB2, TBC1D24
Focal Epilepsy (Autosomal Dominant)	E. Focal and associate: GRIN2A, PRRT2, SCN1A, SCN1B, SCN3A E. Familial temoporal lobe: LGI1 E. Nocturnal frontal lobe: CHRNB2, CHRNA4, CHRNA2, CRH, KCNT1 E. Familial with variable foci: DEPDC5

SYNDROMES ASSOCIATED WITH EPILEPSY	
Rett or Rett-like syndrome	CDKL5, FOXG1**, MBD5, MECP2, MEF2C
Angelman, Angelman-like and Pitt-Hopkins syndromes	UBE3A, SLC9A6, MBD5, ATRX*, EHMT1, TCF4, NRXN1, CNTNAP2
Mowat-Wilson syndrome	ZEB2

SYNDROMES ASSOCIATED WITH EPILEPSY	
Neuronal ceroid lipofuscinoses	PPT1, TPP1, CLN3, CLN5, CLN6*, MFSD8, CLN8, CTSD, DNAJC5, CTSF*, ATP13A2, GRN, KCTD7
Alternating hemiplegia of childhood	ATP1A2, ATP1A3
EAST/SeSAME syndrome	KCNJ10
Epilepsy associated with mental retardation	ATP6AP2, CASK, CLCN4, CNKSR2*, DYRK1A, EEF1A2, GABRB2, GALC, GATM, GRIN2A, GRIN2B, KANSL1, KCNJ11, MEF2C, OPHN1, PNKP, PPT1, RBFOX1, RBFOX3, SLC6A8, SNIP1, SPATA5, SRPX2, SYN1*
Epilepsy associated with cerebral malformations (lissencephaly, microcephaly, porencephaly, and/or cerebellar hypoplasia)	ADGRG1 (GPR56), ARHGAP31, ARX, ASPM, CASK, CENPJ, COL4A1,COL4A2, DCX, DOCK6, EMX2, EOGT, FLNA, MCPH1, MTOR, NDE1, NOTCH1, OPHN1*, PAFAH1B1, QARS, RBPJ, RELN, SLC25A19, STIL, TSEN54*, TUBA1A, WDR62, ZEB2
Channelopathies associated with neurological diseases	KCNA1, KCNMA1, KCND2, KCNH5

NEUROMETABOLIC / MITOCHONDRIAL / LYSOSOMAL EPILEPSIES	
Epilepsy associated with mitochondrial encephalomyopathy	NDUFA1, NUBPL*, POLG2, POLG, POLG2, SURF1*
Epilepsy associated with lysosomal pathology	Ceroid lipofuscinosis: ATP13A2, CLN3, CLN5, CLN6, CLN8, CTSD, CTSF, DNAJC5, GRN, KCTD7, MFSD8, PPT1, TPP1 Gaucher syndrome: GBA, PSAP Sialidosis: NEU1
Epilepsy associated with neurometabolic disorders	ADSL, ABAT, AGA, ALDH5A1*, ALDH7A1*, ALG13*, AMT, ARG1, BCKDK, BTD, DPYD, FH*, FOLR1, GAMT, GCH1, GCSH*, GLDC*, GNE, L2HGDH, LIAS, MMACHC, MOCS1*, MTHFR, PDHA1*, PDHB*, PEX1, PGK1*, PHF6, PNPO, PRODH**, PTS, QDPR, SLC19A3, SLC25A15, SLC2A1, SLC46A1, SLC6A8, ST3GAL5*, SUOX

All the genes included in this approach have a 20x coverage greater than 99%, with the exception of 36 genes that have coverage of 90 - 99% * and 3 genes that have a coverage of 80 - 90% **

NIM Net® Epilepsy

NIM Net® Epilepsy

NECESSARY DOCUMENTATION:

- 1. Request form*
- 2. Informed consent*
- 3. Medical report

CONDITIONS OF SAMPLE SHIPPING:

Peripheral blood: 3–5 ml in EDTA For other samples, please consult with our technical management.

NIMGenetics has extraction centers in all the countries where it operates.

Consult with the delegate or the central office.

BIBLIOGRAPHY

Scheffer I.E., Berkovic S., Capovilla G., Connolly M.B., French J., Guilhoto L., Hirsch E., Jain S., Mathern G.W., Moshé S.L. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512–521.

McTague A et al. Lancet Neurol. 2016 Mar:15(3):304-16.

- **1** An integral solution that allows two approaches:
 - A broad spectrum approach, using ExoNIM® Plus Epilepsy.
 - The study of defined epileptic syndromes, using ExoNIM® Targeted designs (combinable with each other).
- **2 Great flexibility** based on the sequencing of the complete exome:
 - Addresses complex pathologies through combined analysis of designs directed to the different signs and symptoms of the patient, together with designs associated with epilepsy.
 - Studies can be expanded, by:
 - Inclusion of genes described after the initial analysis.
 - Conducting broad spectrum studies (ExoNIM® Plus Epilepsy, ExoNIM® Clinical o ExoNIM® Trio).
- Selection of genes with clinical relevance that allows for genetic diagnosis and/or making decisions in a clinical context.
- Reports are interpreted in a clinical context. This includes clinical recommendations in relation to the management of the patient, complementary confirmatory tests and studies of familial segregation.

^{*} Available on our website or upon request to our delegates