RESEARCH AREAS

Single-cell technology can be used in a wide range of research areas:

 $\infty \infty \infty \infty$

 $\dot{0}$

biology

Cancer biology

Neuroscience

Inmunology

Biology of Developmental stem cells

SAMPLE REQUIREMENTS

0.

Single-cell technology requires cells to be individualized.

	Single-cell gene expression	Fixed RNA profiling
Initial number of total cells	-	>300.000 cells >500.000 nuclei
Cell viability	>95%	>80% 1
Optimal concentration (cells/µl)	700-1.200	400-4.000 ² (single plex) 500-6.000 ² (4 plex) 500-10.000 ² (16 plex)
Recommended cell number per sample	500-10.000	500-10.000 (single plex) 500-10.000 (4 plex) 500-8.000 (16 plex)
Cell size	<30 μm	<30 µm
Recommended reads per cell	20.000	10.000
Organisms	Eukaryotes	Human and mouse
Shipping to NIMGenetics	Fresh ³	>300.000 cells >500.000 nuclei
	Cryopreserved ⁴	

¹ Cell viability before fixation.

² Depending on the target.

³ 10X recommends immediate cold shipping, preferably within 30 min of individualization. Consult.

⁴ In cryopreserved cells, a loss of 50% of viable cells over the original number of cells is assumed.

SPAIN

Avda. Isla Graciosa, 3 · Planta baja San Sebastián de los Reyes 28703 (Madrid) Tel. +34 91 037 83 54

PORTUGAL Complexo Interdisciplinar Universidade de Lisboa. Salas 2.12 – 2.14 Avenida Prof. Gama Pinto nº 2 1649-003 Lisboa +351 93 234 8032

BRAZIL Rua Elvira Ferraz, nº250, Cj. 211. Itaim São Paulo, SP. CEP: 04552-040 Te. +55 11 3044 1813

Corporatio MEXICO

World Trade Center Montecito, 38 - Piso 35 Oficina 10 Col. Nápoles 03810 Ciudad de México Tel. +52 55 6823 2076

tSNE_

SINGLE-CELL Individual sequencing for global thinking

Single-cell RNA-Seq

technology allows the analysis of transcriptomes at the level of a single cell to discover sample heterogeneity. This solution facilitates the study of previously inaccessible information since it can analyze, in addition to transcriptomes, epigenomes and immune repertoires with the **resolution of individual cells**.

What are the advantages of single-cell RNA-seq compared to conventional RNA-seq?

Sequencing technologies require a cell lysis step in which the genetic material of all the cells contained in the sample is mixed in the same tube to make the sequencing libraries.

Most samples have a heterogeneous cellular composition, therefore, the results obtained from a conventional sequencing, and specifically from a bulk RNA-Seq, represent the average expression of all cells.

However, the single-cell RNA-Seq allows to individualize the cells so that the specific expression of each of the cells can be analyzed which permits to identify all the cell types contained in a sample.

NIMGenetics offers to researchers the single-cell service, both in fresh and fixed cells.

Single-Cell Gene expression

The *single-cell* **RNA-Seq** application provides transcriptional profiles that facilitate researchers to understand at single-cell level the individual gene expression profiles and how they differ among the thousands of cells contained in a sample.

Source: Own design and www.10xgenomics.com

- In this application the fresh cells are encapsulated in GEMs where once cell lysis occurs the polyA tails of the mRNA molecules are captured.
- Subsequently, a cDNA labeled with a barcode that identifies the original cell and a unique molecular identifier (UMI) that refers to each mRNA transcript is generated.
- Finally, the cDNA of each cell is amplified and an Illumina® adapter containing a sample identifier is added. The generated libraries are then sequenced in our NovaSeq® 6000 equipment and the data is easily analyzed by specific software.

Fixed RNA-profiling

The *fixed RNA-profiling technique* brings the opportunity to study the complete transcriptome from single cells based on probe hybridization.

The **Chromium iX** instrument enables to work with cells fixed at the time of collection thus solving one of the main barriers that single-cell technology presented until now.

Source: Modified from www.10xgenomics.com

- This modality manages to preserve that biological information most susceptible of being deteriorated.
- This allows the study of single-cell gene expression in samples that were previously inaccessible due to logistical challenges in handling, transporting and storing samples.